Современная формулировка периодического закона д. и. менделеева

Слайд 8«Гениальный химик, первоклассный физик, плодотворный исследователь в области гидродинамики, метеорологии,

геологии, в различных отделах химической технологии и других сопредельных с химией

и физикой дисциплинах, глубокий знаток химической промышленности и промышленности вообще, особенно русской, оригинальный мыслитель в области учения о народном хозяйстве, государственный ум, которому, к сожалению, не суждено было стать государственным человеком, но который видел и понимал задачи и будущность России лучше представителей нашей официальной власти». Такую оценку Менделееву дает Лев Александрович Чугаев — русский советский химик и биохимик, профессор Петербургского технологического института и Петербургского университета.

Н. А. Ярошенко. Д. И. Менделеев. 1886. Масло.

Математическая карта

Во многих случаях в истории науки великие предсказания, основанные на новых уравнениях, оказывались верными. Каким-то образом математика раскрывает некоторые природные секреты, прежде чем экспериментаторы их обнаружат. Один из примеров — антиматерия, другой — расширение Вселенной. В случае Менделеева, предсказания новых элементов возникли без какой-либо творческой математики. Но на самом деле Менделеев открыл глубокую математическую карту природы, поскольку его таблица отражала значение квантовой механики, математических правил, управляющих атомной архитектурой.

В своей книге Менделеев отметил, что «внутренние различия материи, которую составляют атомы», могут быть ответственны за периодически повторяющиеся свойства элементов. Но он не придерживался этой линии мышления. По сути, многие годы он размышлял о том, насколько важна атомная теория для его таблицы.

Но другие смогли прочитать внутреннее послание таблицы. В 1888 году немецкий химик Йоханнес Вислицен объявил, что периодичность свойств элементов, упорядоченных по массе, указывает на то, что атомы состоят из регулярных групп более мелких частиц. Таким образом, в некотором смысле таблица Менделеева действительно предвидела (и предоставила доказательства) сложную внутреннюю структуру атомов, в то время как никто не имел ни малейшего представления о том, как на самом деле выглядел атом или имел ли он какую-нибудь внутреннюю структуру вовсе.

К моменту смерти Менделеева в 1907 году ученые знали, что атомы делятся на части: электроны, переносящие отрицательный электрический заряд, плюс некоторый положительно заряженный компонент, делающий атомы электрически нейтральными. Ключом к тому, как эти части выстраиваются, стало открытие 1911 года, когда физик Эрнест Резерфорд, работающий в Манчестерском университете в Англии, обнаружил атомное ядро. Вскоре после этого Генри Мозли, работавший с Резерфордом, продемонстрировал, что количество положительного заряда в ядре (число протонов, которое он содержит, или его «атомное число») определяет правильный порядок элементов в периодической таблице.

Генри Мозли.

Атомная масса была тесно связана с атомным числом Мозли — достаточно тесно, чтобы упорядочение элементов по массе только в нескольких местах отличалось от упорядочения по числу. Менделеев настаивал на том, что эти массы были неправильными и нуждались в повторном измерении, и в некоторых случаях оказался прав. Осталось несколько расхождений, но атомное число Мозли прекрасно легло в таблицу.

Примерно в то же время датский физик Нильс Бор понял, что квантовая теория определяет расположение электронов, окружающих ядро, и что самые дальние электроны определяют химические свойства элемента.

Подобные расположения внешних электронов будут периодически повторяться, объясняя закономерности, которые первоначально выявила таблица Менделеева. Бор создал свою собственную версию таблицы в 1922 году, основываясь на экспериментальных измерениях энергий электронов (наряду с некоторыми подсказками из периодического закона).

Таблица Бора добавила элементы, открытые с 1869 года, но это был тот же периодической порядок, открытый Менделеевым. Не имея ни малейшего представления о квантовой теории, Менделеев создал таблицу, отражающую атомную архитектуру, которую диктовала квантовая физика.

Новая таблица Бора не стала ни первым, ни последним вариантом изначального дизайна Менделеева. Сотни версий периодической таблицы с тех пор были разработаны и опубликованы. Современная форма — в горизонтальном дизайне в отличие от первоначальной вертикальной версии Менделеева — стала широко популярной только после Второй мировой войны, во многом благодаря работе американского химика Гленна Сиборга.

Сиборг и его коллеги создали несколько новых элементов синтетически, с атомными числами после урана, последнего природного элемента в таблице. Сиборг увидел, что эти элементы, трансурановые (плюс три элемента, предшествовавшие урану), требовали новой строки в таблице, которую не предвидел Менделеев. Таблица Сиборга добавила строку для тех элементов под аналогичным рядом редкоземельных элементов, которым тоже не было места в таблице.

Вклад Сиборг в химию принес ему честь назвать собственный элемент — сиборгий с номером 106. Это один из нескольких элементов, названных в честь известных ученых. И в этом списке, конечно, есть элемент 101, открытый Сиборгом и его коллегами в 1955 году и названный менделевием — в честь химика, который прежде всех остальных заслужил место в периодической таблице.

Заходите на наш канал с новостями, если хотите больше подобных историй.

История таблицы Менделеева: как все начиналось

Попытки классифицировать и систематизировать известные химические элементы предпринимались задолго до Дмитрия Менделеева. Свои системы элементов предлагали такие известные ученые, как Деберейнер, Ньюлендс, Мейер и другие. Однако из-за нехватки данных о химических элементах и их правильных атомных массах предложенные системы были не совсем достоверными.

История открытия таблицы Менделеева начинается в 1869 году, когда российский ученый на заседании Русского химического общества рассказал своим коллегам о сделанном им открытии. В предложенной ученым таблице химические элементы располагались в зависимости от их свойств, обеспечивающихся величиной их молекулярной массы.

Интересной особенностью таблицы Менделеева было также наличие пустых клеток, которые в будущем были заполнены открытыми химическими элементами, предсказанными ученым (германий, галлий, скандий). После открытия периодической таблицы в нее много раз вносились добавления и поправки. Совместно с шотландским химиком Уильямом Рамзаем Менделеев добавил в таблицу группу инертных газов (нулевую группу).

В дальнейшем история периодической таблицы Менделеева была напрямую связана с открытиями в другой науке – физике. Работа над таблицей периодических элементов продолжается до сих пор, и современные ученые добавляют новые химические элементы по мере их открытия. Значение периодической системы Дмитрия Менделеева сложно переоценить, так как благодаря ей:

  • Систематизировались знания о свойствах уже открытых химических элементов;
  • Появилась возможность прогнозирования открытия новых химических элементов;
  • Начали развиваться такие разделы физики, как физика атома и физика ядра;

Существует множество вариантов изображения химических элементов согласно периодическому закону, однако наиболее известный и распространенный вариант – это привычная для каждого таблица Менделеева.

Закономерности изменения свойств элементов и их соединений в связи с положением в Периодической системе химических элементов Д.И. Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства.

Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

Слайд 13Легенду, будто бы Периодическая таблица приснилась ему во сне, Менделеев

придумал сам, для настырных поклонников науки, не понимающих, что такое озарение.

Менделеев, будучи химиком, за основу своей системы взял химические свойства элементов, решив расположить химически похожие элементы друг под другом, при этом соблюдая принцип возрастания атомных весов. Ничего не вышло! Тогда ученый просто взял и произвольно изменил атомные веса нескольких элементов (например, он присвоил урану атомный вес 240 вместо принятого 60, т. е. увеличил в четыре раза!), переставил местами кобальт и никель, теллур и йод, поставил три пустые карточки, предсказав существование трех неизвестных элементов. Опубликовав в 1869 г. первый вариант своей таблицы (63 элемента), он открыл закон, что «свойства элементов стоят в периодической зависимости от их атомного веса».

Слайд 11Когда Менделеев читал лекции в Петербургском университете, он обнаружил, что

ни в России, ни за рубежом нет курса общей химии,

достойного быть рекомендованным студентам. И тогда он решил написать его сам. Его фундаментальная работа, получила название «Основы химии». Работая над вторым выпуском, Менделеев столкнулся с большими затруднениями, связанными с систематизацией и последовательностью изложения материала, описывающего химические элементы. Сначала Дмитрий Иванович хотел сгруппировать все описываемые им элементы по валентностям, но потом выбрал другой метод и объединил их в отдельные группы, исходя из сходства свойств и атомного веса. Размышление над этим вопросом вплотную подвело Менделеева к главному открытию его жизни, которое было названо Периодическая система Менделеева.

Д. И. Менделеев. Рукопись «Опыта системы элементов, основанной на их атомном весе и химическом сходстве». 17 февраля (1 марта) 1869 года

Химический элемент и его свойства

В 1869 г. Д.И. Менделеев сформулировал периодический закон, современная формулировка которого звучит следующим образом:

Свойства химических элементов находятся в периодической зависимости от заряда ядра атомов химических элементов.

До того, как начать разговор о Периодической системе, давайте разберемся с тем, что же такое собственно химический элемент.

Химический элемент — совокупность (группа, сорт, вид) атомов, обладающих одинаковыми свойствами, с одним и тем же количеством протонов и нейтронов в ядре, электронов в электронной оболочке.

Свойства элементов можно распределить по нескольким группам:

  • металлические/неметаллические свойства,
  • окислительно-восстановительные свойства,
  • радиус атома,
  • электроотрицательность,
  • валентность и степени окисления,
  • энергия ионизации,
  • энергия сродства к электрону.

Данные свойства во многом зависят от положения атома в таблице Менделеева и атома. Подробнее о влияние конфигурации на свойства атома можно прочитать в статье «Строение атомов и электронные конфигурации».

Также практически все химические элементы, в отличие от веществ:

  • Могут образовывать ионы.
  • Содержатся в различных органических и неорганических веществах.
  • Могут образовывать аллотропные модификации (аллотропия — способность химического элемента образовывать несколько простых веществ). Например, атом кислорода может быть в виде соединения кислорода О2 и озона О3.
  • Имеют изотопы — разновидности атомов химического элемента, имеющие одинаковое количество протонов и электронов, но разное количество нейтронов, следовательно, и разную атомную массу.
Как «вес» элемента может сказаться на его «работе»?Мы упомянули, что изотопы имеют различную массу. Оказывается, «вес» элемента напрямую влияет на его свойства и применение.Самыми известными являются изотопы водорода: водород (масса равна 1), дейтерий (масса равна 2) и тритий (масса равна 3). Более тяжелые изотопы используются в атомной энергетике, для осуществления термоядерного синтеза и для создания водородных бомб.Изотопы имеет и углерод: углерод-12, углерод-13 и углерод-14 (цифра обозначает массу атома). Если первые два стабильны и встречаются повсеместно, то последний за счет своей массы менее стабилен — он хочет быстрее сбросить с себя лишние нейтроны путем распада. Данное качество сыграло решающую роль в применении углерода-14. Ученые рассчитали «время жизни» изотопа, благодаря чему при анализе органических веществ по количеству найденного углерода-14 можно сделать вывод о возрасте найденного объекта. Данный метод был назван радиоуглеродным анализом, сейчас он находит широкое применение при датировке (определении возраста) ископаемых. За это открытие в 1960 году Уилларду Либби была присуждена Нобелевская премия по химии. 

Теперь, когда мы разобрались в понятии и общих свойствах химических элементов, давайте разберем подробнее, как именно зависят их свойства от местонахождения в Периодической системе.

История

В 1869 году, работая над учебником химии, Дмитрий Менделеев столкнулся с проблемой систематизации материала, накопленного за много лет разными учёными – его предшественниками и современниками. Ещё до работы Менделеева предпринимались попытки систематизировать элементы, что послужило предпосылками разработки периодической системы.

Рис. 1. Менделеев Д. И..

Поиски классификации элементов кратко описаны в таблице.

Год

Учёный

Что сделано

1829

Иоганн Дёберейнер

Объединил элементы со схожими химическими свойствами в триады. Например, одну триаду составили Li, Na, K. Таблица включала пять триад

1862

Александр Шанкуртуа

Создал «земную спираль», расположив 50 элементов по спирали

1864

Джон Ньюлендс

Расположил элементы в порядке возрастания атомных масс и выявил сходство между каждым восьмым элементом. Закономерность была названа законом октав

1864

Лотар Мейер

Распределил 28 элементов по шести столбцам в соответствии с их валентностью

Менделеев упорядочил элементы по относительной атомной массе, расположив их в порядке возрастания. Всего получилось девятнадцать горизонтальных и шесть вертикальных рядов. Это была первая редакция периодической таблицы элементов. С этого начинается история открытия периодического закона.

Учёному понадобилось почти три года, чтобы создать новую, более совершенную таблицу. Шесть столбцов элементов превратились в горизонтальные периоды, каждый из которых начинался щелочным металлом, а заканчивался неметаллом (инертные газы ещё не были известны). Горизонтальные ряды образовали восемь вертикальных групп.

В отличие от своих коллег Менделеев использовал два критерия распределения элементов:

  • атомную массу;
  • химические свойства.

Оказалось, что между двумя этими критериями прослеживается закономерность. После определённого количества элементов с возрастающей атомной массой, свойства начинают повторяться.

Рис. 2. Таблица, составленная Менделеевым.

Изначально теория не выражалась математически и не могла полностью подтвердиться экспериментально. Физический смысл закона стал понятен только после создания модели атома. Смысл заключается в повторении структуры электронных оболочек при последовательном увеличении зарядов ядер, что отражается на химических и физических свойствах элементов.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Почему в таблице Мендлеева были пустые клетки?

Памятник Менделееву в Тобольске пора пополнять новыми элементами

Значимость теории Менделеева, спустя некоторое время ставшей аксиомой современной науки, проявилась довольно быстро. Дело в том, что до него элементы упорядочивали в сплошную линию.

Но уже первая версия таблицы Менделеева оставляла пустыми несколько клеток под новые элементы: пустые места должны были занять так называемые эка-элементы, похожие на соседей. Менделееву даже удалось с поразительной точностью предсказать целый ряд их физических и химических свойств.

Соответствующие экабор, экаалюминий, экасилиций, экамарганец были получены экспериментально, получив уже в наше время собственные имена скандий, галлий, германий, технеций. Практика эка-элементов сохраняется и по сей день.

Для известных в середине XIX века бериллия, индия, урана, тория, церия, титана, иттрия Менделееву пришлось исправить атомные веса, чтобы разместить их в таблице согласно химическим свойствам, на что не решился ни один другой исследователь. И это тоже оказалось верным.

Один из первых вариантов таблицы Менделеева с предсказанными элементами

Абсолютность таблицы однажды подвела исследователей: инертным газам в первое время не нашлось в ней места, поэтому их существование активно отвергалось.

В дальнейшем периодичность позволила найти класс несуществующих (или чрезвычайно редких) в природе при обычных состояниях трансурановых элементов.

Закон

Установив периодичность изменений свойств с увеличением атомной массы, Менделеев в 1871 году сформулировал периодический закон, ставший основополагающим в химической науке.

Дмитрий Иванович определил, что свойства простых веществ находятся в периодической зависимости от относительных атомных масс.

Наука XIX века не обладала современными знаниями об элементах, поэтому современная формулировка закона несколько отличается от менделеевской. Однако суть остаётся прежней.

С дальнейшим развитием науки было изучено строение атома, что повлияло на формулировку периодического закона. Согласно современному периодическому закону свойства химических элементов зависят от зарядов атомных ядер.

Понравилась статья? Поделиться с друзьями:
История России
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: